
CC BY-SA

© 2025 Released under the CC BY-SA license

1

CS 4530: Fundamentals of Software Engineering
Lesson 5.4
Continuous Delivery

Rob Simmons

Khoury College of Computer Sciences

https://creativecommons.org/licenses/by-sa/4.0/

Continuous Delivery

• “Faster is safer”: Key values of continuous delivery
• Release frequently, in small batches

• Maintain key performance indicators to evaluate the impact
of updates

• Phase roll-outs

• Evaluate business impact of new features

Continuous Delivery is about deciding which
new features to deliver, and when

• You have a large system with many engineers
working on new features (and bug fixes ☺)

• When a new feature or fix is ready, how do you roll
it out to your users?

A continuous-delivery process is also a
software pipeline

0…………….

Code Review Style Check

Compile

Unit Test

Prepare

Deployment

Integration Test

Load Test

Automate this centrally, provide a central record of results

KPIsEnd-to-end Test

Develop Build Test Deploy Monitor

0…………….

Continuous Delivery does not mean Immediate
Delivery

• Even if you are deploying every day
(“continuously”), you still have some latency

• A new feature I develop today won't be released
today

• But, a new feature I develop today can begin the
release pipeline today (minimizes risk)

• Release Engineer: gatekeeper who decides when
something is ready to go out, oversees the actual
deployment process

Ways to mitigate deployment risks

• Use a realistic staging environment

• Use post-deployment monitoring

• Use split deployments

• Use tools to automate deployment tasks

6

Build a staging environment to qualify
features for delivery

Testing

Environment

Staging Environment Production Environment

Beta/Dogfooding User Requests

Developer
Environments

Revisions are “promoted” towards production

Q/A takes place in each stage (including production!)

Split Deployments Mitigate Risk

• Lower risk if a problem occurs
in staging than in production

• Or deploy to a small set of
users before deploying more
widely

• Names:
• “Eat your own dogfood”

• Beta/Alpha testers

• A/B testing

• "canaries"

Post-delivery monitoring mitigates risk
• Consider both direct (e.g. business) metrics, and indirect

(e.g. system) metrics
• Hardware
• Voltages, temperatures, fan speeds, component health

• OS
• Memory usage, swap usage, disk space, CPU load
• Middleware

• Memory, thread/db connection pools, connections,
response time

• Applications

• Business transactions, conversion rate, status of 3rd party
components

Continuous Delivery Tools

• Simplest tools deploy from a branch to a service (e.g. Render.com,
Heroku)

• More complex tools:
• Auto-deploys from version control to a staging environment + promotes through

release pipeline
• Monitors key performance indicators to automatically take corrective actions
• Example: “Spinnaker” (Open-Sourced by Netflix, c 2015)

Example CD pipeline from Spinnaker’s documentation: https://spinnaker.io/docs/concepts/#application-deployment

https://spinnaker.io/
https://spinnaker.io/docs/concepts/#application-deployment
https://spinnaker.io/docs/concepts/#application-deployment
https://spinnaker.io/docs/concepts/#application-deployment

Tools for Monitoring Deployments

• Nagios (c 2002): Agent-based architecture (install agent on each
monitored host), extensible plugins for executing “checks” on hosts

• Track system-level metrics, app-level metrics, user-level KPIs

Monitoring can help identify operational issues

Grafana (AGPL, c 2014) InfluxDB (MIT license, c 2013)

How should we allocate our testing
resources?

• How much unit testing should be required?

• When should we do code reviews?

• How often should we do integration tests?

• Different organizations may make different choices

Two extremes(?)
Continuous Delivery vs. TDD

• Test driven development
• Write and maintain tests per-feature (manual! hard!)

• Unit tests help locate bugs (at unit level)

• Integration/system tests also needed to locate
interaction-related faults

• Continuous delivery
• Write and maintain high-level observability metrics

• Deploy features one-at-a-time, look for canaries in
metrics

• Write fewer integration/system tests

CI at scale: Google Test Automation
Platform (TAP (2020))

• Massive continuous build of entire Google codebase
• in a dedicated data center

• 50,000 unique changes per-day, 4 billion test cases per-day

• Engineers submit unit tests along with their changes
• Block merge if they fail

• If they pass, change is put in the codebase.
• visible to entire company!

• average wait time to this point: 11 minutes

• Then (asynchronously) run all affected integration tests
• If any fail, change is sent back to a human on the submitter's team

(the “build cop”) who must act immediately to roll-back or fix.

“Software Engineering at Google: Lessons Learned from
Programming Over Time,” Wright, Winters and Manshreck, 2020
(O’Reilly), pp. 494-497

Facebook: "Move fast and break things"

• de-prioritize unit tests

• Emphasis on getting features to users quickly

• Strategy: push many small changes to fractions of
the user base. ("split deployments")

16

Deployment Example: Facebook.com

• Pre-2016

~1 week of development

3x Daily

Stabilize

release branch

Weekly

3 days

All changes from week
that are ready for release

Release Branch
4 days All changes that survived stabilizing

Developers working in their own branch

Your change doesn’t go out unless
you’re there that day at that time to

support it!

~1 week of development

master branch

When feature is ready, push as 1 change to master branch

production “When in doubt back out”

Facebook used to have an elaborate system
of branches
• dev branches got merged into master,
• then once a week all changes from the past week were

pulled into a release branch (often 10,000 changes per
week)

• For 3 days they “stabilized” the release branch – find
changes that are causing very bad behavior and back
them out. (manual process!!)

• Then for the last 4 days of the week, every change that
survived that stabilization got individually pushed to
production batched so that this happens 3x/day.

• Important to do small deploys so that you could isolate
bad changes.

Deployment Example

• Chuck Rossi, Director Software Infrastructure &
Release Engineering @ Facebook

“Our main goal was to make sure that the

new system made people’s experience

better — or at least, didn’t make it worse.

After a year of planning and development,

over the course of three days we enabled

100% of our production web servers to

run code deployed directly from master”

“Rapid release at massive scale” https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

Post-2016: truly continuous releases from
master branch

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

Post-2016: Truly Continuous Releases from
Master Branch (excerpts from blog post)

1. First, diffs that have passed a series of automated internal tests and land in master
are pushed out to Facebook employees.

2. In this stage, get push-blocking alerts if we’ve introduced a regression, and an
emergency stop button lets us keep the release from going any further.

3. If everything is OK, push the changes to 2 percent of production, where again we
collect signal and monitor alerts, especially for edge cases that our testing or
employee dogfooding may not have picked up.

4. Finally, roll out to 100 percent of production, where our Flytrap tool aggregates user
reports and alerts us to any anomalies.

5. Many of the changes are initially kept behind feature flags, which allows to roll out
mobile and web code releases independently from new features, helping to lower
the risk of any particular update causing a problem.

6. If we do find a problem, simply switch the feature off rather than revert back to a
previous version or fix forward.

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

Continuous Delivery Tools Can Take Automated
Actions

• Example: Automated roll-back of updates at Netflix
based on "streams-per-second" (SPS)

https://www.youtube.com/watch?v=qyzymLlj9ag

https://www.youtube.com/watch?v=qyzymLlj9ag

Monitoring Services Can Take Automated Actions

From Monitoring to Observability

• Understanding what is going on inside of our deployed
systems by visualizing internal metrics

Example dashboard by DataDog:
https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/

https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/
https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/
https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/
https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/
https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/
https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/
https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/

Beware of Metrics

• McNamara Fallacy

• Measure whatever can be easily measured

• Disregard that which cannot be measured
easily

• Presume that which cannot be measured
easily is not important

• Presume that which cannot be measured
easily does not exist

What not to do: Failed Deployment at Knight
Capital “In the week before go-live, a Knight engineer manually

deployed the new RLP code in SMARS to its 8 servers. However,
he made a mistake and did not copy the new code to one of the
servers. Knight did not have a second engineer review the
deployment, and neither was there an automated system to
alert anyone to the discrepancy. “

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html

What could Knight capital have done better?

• Use capture/replay testing instead of driving
market conditions in a test

• Avoid including “test” code in production
deployments

• Automate deployments

• Define and monitor risk-based KPIs

• Create checklists for responding to incidents

Aside: Infrastructure As Code

• Provisioning servers is tedious and error prone
• Deploy a VM, then ssh to it, install some packages, etc

• Keeping servers up-to-date is also a struggle

• Ideal:
• “Give me HAProxy with some configuration file, and

keep that configuration in a git repo, and when I
change it, roll out an update”

• “Give me some containers running my NodeJS app,
and when I update my app, roll it out to those
containers”

• “Give me a bunch of servers with MongoDB set up in
a cluster”

Infrastructure as Code represents complex
infrastructure in “recipes”
• Goal: Create a system that, when run, can

automatically bring physical or virtual machines to
some configured state

• These configurations can then go into version control,
code review, etc

• Metaphor: “Recipes” for configuring servers, organized
into “cookbooks”

• Engineers define “healthy” states for infrastructure,
then system automatically provisions, validates, and (if
needed) repairs deployed resources

• “Oh, this is how they do things at Amazon” -
Inspiration for Chef, c 2009

• Other tools with similar aims: Puppet (c 2005), Ansible
(c 2012)

Learning objectives for this lecture

• It’s the end of today’s lecture, so you should be
able to…

• Describe how continuous integration helps to catch
errors sooner in the software lifecycle

• Describe strategies for performing quality-assurance on
software as and after it is delivered

• Compare and contrast continuous delivery with test
driven development as a quality assurance strategy

	Slide 1: CS 4530: Fundamentals of Software Engineering Lesson 5.4 Continuous Delivery
	Slide 2: Continuous Delivery
	Slide 3: Continuous Delivery is about deciding which new features to deliver, and when
	Slide 4: A continuous-delivery process is also a software pipeline
	Slide 5: Continuous Delivery does not mean Immediate Delivery
	Slide 6: Ways to mitigate deployment risks
	Slide 7: Build a staging environment to qualify features for delivery
	Slide 8: Split Deployments Mitigate Risk
	Slide 9: Post-delivery monitoring mitigates risk
	Slide 10: Continuous Delivery Tools
	Slide 11: Tools for Monitoring Deployments
	Slide 12: Monitoring can help identify operational issues
	Slide 13: How should we allocate our testing resources?
	Slide 14: Two extremes(?) Continuous Delivery vs. TDD
	Slide 15: CI at scale: Google Test Automation Platform (TAP (2020))
	Slide 16: Facebook: "Move fast and break things"
	Slide 17: Deployment Example: Facebook.com
	Slide 18: Facebook used to have an elaborate system of branches
	Slide 19: Deployment Example
	Slide 20: Post-2016: truly continuous releases from master branch
	Slide 21: Post-2016: Truly Continuous Releases from Master Branch (excerpts from blog post)
	Slide 22: Continuous Delivery Tools Can Take Automated Actions
	Slide 23: Monitoring Services Can Take Automated Actions
	Slide 24: From Monitoring to Observability
	Slide 25: Beware of Metrics
	Slide 26: What not to do: Failed Deployment at Knight Capital
	Slide 27: What could Knight capital have done better?
	Slide 28: Aside: Infrastructure As Code
	Slide 29: Infrastructure as Code represents complex infrastructure in “recipes”
	Slide 30: Learning objectives for this lecture

