CS 4530: Fundamentals of Software Engineering
Lesson 5.4
Continuous Delivery

Rob Simmons
Khoury College of Computer Sciences

© 2025 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Continuous Delivery

» “Faster is safer”: Key values of continuous delivery

* Release frequently, in small batches

* Maintain key performance indicators to evaluate the impact
of updates

* Phase roll-outs
* Evaluate business impact of new features

Continuous Delivery is about deciding which
new features to deliver, and when

* You have a large system with many engineers
working on new features (and bug fixes ©)

* When a new feature or fix is ready, how do you roll
it out to your users?

A continuous-delivery process is also a
software pipeline

Automate this centrally, provide a central record of results

¥

Style Check Integration Test
: Our changed code
Unit Test

Build Build Send
friends list Suggestions response

Prepare
Deployment

Other developers’ changed code

Continuous Delivery does not mean Immediate
Delivery

* Even if you are deploying every day
(“continuously”), you still have some latency

* A new feature | develop today won't be released
today

* But, a new feature | develop today can begin the
release pipeline today (minimizes risk)

* Release Engineer: gatekeeper who decides when
something is ready to go out, oversees the actual
deployment process

Ways to mitigate deployment risks

e Use a realistic staging environment

* Use post-deployment monitoring

e Use split deployments

e Use tools to automate deployment tasks

Build a staging environment to qualify
features for delivery

Developer
Environments Beta/Dogfooding User Requests

|

Testing
Environment

Staging Environment Production Environment

Revisions are “promoted” towards production

Q/A takes place in each stage (including production!)

Split Deployments Mitigate Risk

* Lower risk if a problem occurs
in staging than in production

Old Version

Web Application Database
SEerver Server SErver
Web Application Database
Server Server Server

Mew Version

* Or deploy to a small set of
users before deploying more
widely

Most users
(F554)

* Names:
e “Eat your own dogfood”
* Beta/Alpha testers
* A/B testing
e "canaries"

Some users
[5%)

Post-delivery monitoring mitigates risk

Consider both direct (e.g. business) metrics, and indirect
(e.g. system) metrics

Hardware

Voltages, temperatures, fan speeds, component health
OS

Memory usage, swap usage, disk space, CPU load
Middleware

Memory, thread/db connection pools, connections,
response time

Applications

Business transactions, conversion rate, status of 3rd party
components

Continuous Delivery Tools

» Simplest tools deploy from a branch to a service (e.g. Render.com,
Heroku)

* More complex tools:

* Auto-deploys from version control to a staging environment + promotes through
release pipeline

* Monitors key performance indicators to automatically take corrective actions
 Example: “Spinnaker” (Open-Sourced by Netflix, c 2015)

Find image Cutover Deploy PROD Tear down Destroy
Start from TEST Deploy CANARY manual approval (red/black) CANARY old PROD

Wait 30 mins Wait 2 hrs

Example CD pipeline from Spinnaker’s documentation: https://spinnaker.io/docs/concepts/#application-deployment

https://spinnaker.io/
https://spinnaker.io/docs/concepts/#application-deployment
https://spinnaker.io/docs/concepts/#application-deployment
https://spinnaker.io/docs/concepts/#application-deployment

Tools for Monitoring Deployments

* Nagios (c 2002): Agent-based architecture (install agent on each
monitored host), extensible plugins for executing “checks” on hosts

* Track system-level metrics, app-level metrics, user-level KPls

;i’iCIﬂGA

Q Q Search... Y
.oo “9
22 Dashboard & o % 6@’“\ &
G‘QQ 09,,0_» _ \6‘@0 O&\) g@qe y 6‘" R & @rpe,
© Problems < &o @@Q @ & o P S & &L & & &
OIS A w\°+~+\\°g SN é‘°¢\<°°¢\ S &L & & é“‘\ é“gé‘o ® & @
Host Problems & & 0#‘ SR Q'ao ‘O"'& ‘\‘:-’\o R R ‘i’\o ‘i’\o QG‘\ Q‘o "o\\) fo\Q 9\0 fa& (99‘{\ '\Q’¢ \)"0
Service Problems esxi01
Service Grid esxi02
Curren t Downtimes esxi03
e essioa @ [] [N [] []
'} Overview esxiO5
<9 History esxioé
esxioz) @ o (N ® o
& Documentation ibhpe . . .

o System nagios @ o008 o0 06060 6 o

Monitoring can help identi

fy operational issues

Overall Cluster Memory Usage

340718
320TB
378

2.807TB

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

Overall Cluster CPU Usage

1600 Ghz
1400 Ghz M
1200 Ghz
1000 Ghz

800 Ghz

600 Ghz

400 Ghz

200 Ghz

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

Grafana (AGPL, c 2014)

i Active Memory Fo)
10G
_time _value _field _measurement fuzzer host target
2022-09-0513:52:00 10.35G active mem afiplusplus_with_knobs G4PlusVM136 sqlite3
8G
6G
46
2022-09-05 20:00:00 2022-09-06 08:00:00
CPU Usage
40
35
30
25

2022-09-05 20:00:00

2022-09-06 08:00:00

InfluxDB (MIT license, c 2013)

How should we allocate our testing
resources?

* How much unit testing should be required?

* When should we do code reviews?

* How often should we do integration tests?

* Different organizations may make different choices

Two extremes(?)
Continuous Delivery vs. TDD

e Test driven development
e Write and maintain tests per-feature (manual! hard!)
e Unit tests help locate bugs (at unit level)
* Integration/system tests also needed to locate
interaction-related faults

* Continuous delivery

* Write and maintain high-level observability metrics

* Deploy features one-at-a-time, look for canaries in
metrics

» Write fewer integration/system tests

CI at scale: Google Test Automation
Platform (TAP (2020))

* Massive continuous build of entire Google codebase
* in a dedicated data center
e 50,000 unique changes per-day, 4 billion test cases per-day

* Engineers submit unit tests along with their changes
* Block merge if they fail

* |f they pass, change is put in the codebase.

* visible to entire company!
* average wait time to this point: 11 minutes

* Then (asynchronously) run all affected integration tests

* If any fail, change is sent back to a human on the submitter's team
(the “build cop”) who must act immediately to roll-back or fix.

“Software Engineering at Google: Lessons Learned from
Programming Over Time,” Wright, Winters and Manshreck, 2020
(O’Reilly), pp. 494-497

Facebook: "Move fast and break things”

e de-prioritize unit tests
 Emphasis on getting features to users quickly

 Strategy: push many small changes to fractions of
the user base. ("split deployments")

16

Deployment Example: Facebook.com

When feature is ready, push as 1 change to master branch

T
|
master branch 1 3d ays 4 d ayS Al changes that survived stabilizing
I » RelCase Dranct
Weekly I I I i
All changes from week ence brarch 1 1 i
that are ready for release i I i i
| 1 | |
| | | |
v \4 v \ 4
. Your change doesn’t go out unless
production 3 Daily

you're there that day at that time to “When in doubt back out”

support it!

Facebook used to have an elaborate system
of branches

* dev branches got merged into master,

* then once a week all changes from the past week were
pullekcil into a release branch (often 10,000 changes per
wee

* For 3 days they “stabilized” the release branch — find
changes that are causing very bad behavior and back
them out. (manual process!!Y

* Then for the last 4 days of the week, every change that
survived that stabilization got individually pushed to
production batched so that this happens 3x/day.

* Important to do small deploys so that you could isolate
bad changes.

Deployment Example

’ es “Our main goal was to make sure that the
new system made people’'s experience
better — or at least, didn't make it worse.
After a year of planning and development,
over the course of three days we enabled
100% of our production web servers to
run code deployed directly from master”

* Chuck Rossi, Director Software Infrastructure &
Release Engineering @ Facebook

“Rapid release at massive scale” https:/engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

Post-2016: truly continuous releases from
master branch

Push-blocking alerts

Push-blocking tasks
Crashbot for WWW
Emergency button

100% production

Push-blocking tasks
Emergency button

2% production Push-blocking a&ertsl

employees

A
Master

Post-2016: Truly Continuous Releases from
Master Branch (excerpts from blog post)

1. First, diffs that have passed a series of automated internal tests and land in master
are pushed out to Facebook employees.

2. Inthis stage, get push-blocking alerts if we’ve introduced a regression, and an
emergency stop button lets us keep the release from going any further.

3. Ifeverything is OK, push the changes to 2 percent of production, where again we
collect signaland monitor alerts, especially for edge cases that our testing or

employee dogfooding may not have picked up.

4. Finally, roll outto 100 percent of production, where our Flytrap tool aggregates user
reports and alerts us to any anomalies.

5. Many of the changes are initially kept behind feature flags, which allows to roll out
mobile and web code releases independently from new features, helping to lower
the risk of any particular update causing a problem.

6. Ifwe dofind a problem, simply switch the feature off rather than revert back to a
previous version or fix forward.

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

Continuous Delivery Tools Can Take Automated
Actions

 Example: Automated roll-back of updates at Netflix
based on "streams-per-second" (SPS)

SPS Legend: M Experiment M Contro |

PROD:US-EAST-1

SPS Server Successes (License Requests)

Jiijflﬁg

T

=

MONITORING!

https://www.voutube.com/watch?v=ayzymLlj9ag

https://www.youtube.com/watch?v=qyzymLlj9ag

Monitoring Services Can Take Automated Actions

x'iCIﬂGA

Q

22 Dashboard

© Problems

i} Overview

D History

Event Grid
Event Overview
Notifications

Timeline

& Documentation

&2 System

#~ Configuration

& jon

Notifications v G

« 1 2 3 4 5 6 7

24 25 » # 25 < Sortby Notification Start > |

Q Search... Y
OK . :
Slurm Nodes on nagios Sent to jon
2022-02-18
08:49:05 OK - 0 nodes unreachable, 332 reachable
OK . - .
Slurm Nodes on nagios Sent to icingaadmin
2022-02-18
08:49:05 OK - 0 nodes unreachable, 332 reachable

Slurm Nodes on nagios Sent to jon

WARNING - 7 nodes unreachable, 326 reachable

Slurm Nodes on nagios Sent to icingaadmin

WARNING - 7 nodes unreachable, 326 reachable

CRITICAL
2022-02-18
08:42:05

Slurm Nodes on nagios Sent to icingaadmin

CRITICAL - 65 nodes unreachable, 161 reachable

CRITICAL
2022-02-18
08:42:05

Slurm Nodes on nagios Sent to jon

CRITICAL - 65 nodes unreachable, 161 reachable
Slurm Nodes on nagios Sent to icingaadmin
WARNING - 12 nodes unreachable, 205 reachable
Slurm Nodes on nagios Sent to jon
WARNING - 12 nodes unreachable, 205 reachable

Current Service State

nagios
21
127.0.0.1

Up
since 2021-11

0K .
I for 1m 52s Service: Slurm Nodes

Event Details

Type Notification

Start time 2022-02-18 08:42:05
End time 2022-02-18 08:42:05
Reason Normal notification
State @ CRITICAL
Escalated No

Contacts notified 2

Output

CRITICAL - 65 nodes unreachable,

161 reacl

From Monitoring to Observability

* Understanding what is going on inside of our deployed

systems by visualizing internal metrics

i GKE Enhanced Dashboard v~ + AddWidgets

scope uster amespace deployment daemonset jo

Saved Views - - - * - * - & - - v = vl |* = - -

Example dashboard by DataDog:

CPU-intensive n...

CPU

05
o

Tags

host:gke-de

L

ost:gke-de

B hostoke-de.

CPU-intensi...

5.84
5.20
5.17
4.65

user-db-2
user-db-4
user-db-3
user-db-1

https://www.datadoghg.com/blog/gke-dashboards-integration-improvements
Nodes by condition Nodes D: onSets
140
. 1 09
- nodes g
80
@ Deployments Services
From the control plane to the
container level, this dashboard 40
provides you with broad
visibility inte the health and » 5 1 7 5 5 Network rate
performance of your GKE .
clusters so that you can be 10:30 ¢
better prepared to address
potential issues. Memory usage by container CPU usage by container
GKE monitoring guides:
e SR G
+ Datadog Support for GKE :
Autopilot L e ¥ o
SR Rl AW TR
If some graphs appear empty, -
check out the following: P e
More ~
v Control Plane
For the data in this section to populate you must enable GKE control plane metrics. Control plane metrics give you

visibility into the operation of the Kubernetes control plane, which is managed by Google in GKE.

API Server Latency By Method Controller Manager Node Collector... Scheduler Latency by Result

user-db-0
user-db-5
user-db-8
user-db-7
mango-...

1015

Metric
Receiv...
Receiv...

Receiv...

4h CPU usage

1h Past1Hour v “ n a
ON High Density Mode O Eventsi&logs B0 @ £
Nodes
usage Memory-intensi... Memory usage
1,005 gke-ka...
980 ghke-ka.. 1 = SN e
b by uag {‘h‘!#" v 631 gked..
R S od EEEEEEEEEEEEEEEE%%EEEEEEE
602 ghke-us... s S
10:30 1:0 10:30 11:00
T. M. Avg Max Value 563 wm-Bb... T M. Avg Max Value
ho av.. 0.19 027 0.17 559 gked.. h.. av.. 326Mi8 367 MiB 320 MiB
h. av. on 035 0.16 552 ghke-d. h, av 39S MIB 437 ME 411 MiB
h a 027 na2 028 h aw. 474 MIRE 523 MEB 484 MIB
Network errors
1
05
0
10:30 10:45 11:00 015 10:30 045 11:00
Avg Max Value Tags Metric Avg Max Value
7181 MiB/s 13338 MiB 75.06 MiB host:gke-demo-1128... Received By. 0 0 0
114.20 MiB 204.07 MiB 7333 MiB hast:gke-demo-1128. Received By 0 0 []
B3.81 MiB/s 140.68 MiE/s 97.18 MiB/s B hostoke-demo-1128.. Received By a o 1]
Pods
Memory-int... 4h Memory usage
18.64 produ...
15.29 produ... %
10.89 dsmed..
10.72 dev-ds...
5.04 userd.. o = md
496 user-d.. .
T M... Avg Max Value 475 user-d.. T. M.. Avg Max Value
p C 163 m 6.3 148 m 467 user-d P M 145.2 1474 1442,
P G 157 m. 387 2114 452 kafka-... P M. 1434, 1456.. 1432

https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/
https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/
https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/
https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/
https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/
https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/
https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/

Beware of Metrics

 McNamara Fallacy
* Measure whatever can be easily measured

* Disregard that which cannot be measured
easily

* Presume that which cannot be measured
easily is not important

e Presume that which cannot be measured
easily does not exist

What not to do: Failed Deployment at Knight

Ca plta I “In the week before go-live, a Knight engineer manually
deployed the new RLP code in SMARS to its 8 servers. However,
Knightmare: A DeVOpS he made a mistake and did not copy the new code to one of the
servers. Knight did not have a second engineer review the
Cautionary Tale deployment, and neither was there an automated system to

alert anyone to the discrepancy. “

[was speaking at a conference last year on the topics of DevOps, Configuration as Code, and
Continuous Delivery and used the following story to demonstrate the importance making
deployments fully automated and repeatable as part of a DevOps/Continuous Delivery initiative.
Since that conference [have been asked by several people to share the story through my blog.
This story is true — this really happened. This is my telling of the story based on what I have

read (I was not involved in this).

This is the story of how a company with nearly $400 million in assets went bankrupt in 45-

minutes because of a failed deployment.

https://www.henricodolfing.com/2019/06/proje ct-failure-case-study-knight-capital .html

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html

What could Knight capital have done better?

* Use capture/replay testing instead of driving
market conditions in a test

* Avoid including “test” code in production
deployments

 Automate deployments
* Define and monitor risk-based KPIs
* Create checklists for responding to incidents

Aside: Infrastructure As Code

* Provisioning servers is tedious and error prone
* Deploy a VM, then ssh to it, install some packages, etc .

* Keeping servers up-to-date is also a struggle Moy

Has access to SSL certifical
Forwards decrypted traffic to our

certbot
i I d e a I : Installs and renews SSL certificates

* “Give me HAProxy with some configuration file, and
keep that configuration in a git repo, and when |
change it, roll out an update”

* “Give me some containers running my NodelS app,
and when | update my app, roll it out to those
containers”

e “Give me a bunch of servers with MongoDB set up in
a cluster”

Infrastructure as Code represents complex
infrastructure in “recipes”

* Goal: Create a system that, when run, can
automatically bring physical or virtual machines to
some configured state

* These configurations can then go into version control,
code review, etc

* Metaphor: ”Recipes” for configuring servers, organized
into “cookbooks’

* Engineers define ”healthY” states for infrastructure,
then system automatically provisions, validates, and (if
needed) repairs deployed resources

* “Oh, this is how they do things at Amazon” -
Inspiration for Chef, ¢ 2009

e Other tools with similar aims: Puppet (c 2005), Ansible
(c 2012)

Learning objectives for this lecture

* It’'s the end of today’s lecture, so you should be
able to...

* Describe how continuous integration helps to catch
errors sooner in the software lifecycle

* Describe strategies for performing quality-assurance on
software as and after it is delivered

 Compare and contrast continuous delivery with test
driven development as a quality assurance strategy

	Slide 1: CS 4530: Fundamentals of Software Engineering Lesson 5.4 Continuous Delivery
	Slide 2: Continuous Delivery
	Slide 3: Continuous Delivery is about deciding which new features to deliver, and when
	Slide 4: A continuous-delivery process is also a software pipeline
	Slide 5: Continuous Delivery does not mean Immediate Delivery
	Slide 6: Ways to mitigate deployment risks
	Slide 7: Build a staging environment to qualify features for delivery
	Slide 8: Split Deployments Mitigate Risk
	Slide 9: Post-delivery monitoring mitigates risk
	Slide 10: Continuous Delivery Tools
	Slide 11: Tools for Monitoring Deployments
	Slide 12: Monitoring can help identify operational issues
	Slide 13: How should we allocate our testing resources?
	Slide 14: Two extremes(?) Continuous Delivery vs. TDD
	Slide 15: CI at scale: Google Test Automation Platform (TAP (2020))
	Slide 16: Facebook: "Move fast and break things"
	Slide 17: Deployment Example: Facebook.com
	Slide 18: Facebook used to have an elaborate system of branches
	Slide 19: Deployment Example
	Slide 20: Post-2016: truly continuous releases from master branch
	Slide 21: Post-2016: Truly Continuous Releases from Master Branch (excerpts from blog post)
	Slide 22: Continuous Delivery Tools Can Take Automated Actions
	Slide 23: Monitoring Services Can Take Automated Actions
	Slide 24: From Monitoring to Observability
	Slide 25: Beware of Metrics
	Slide 26: What not to do: Failed Deployment at Knight Capital
	Slide 27: What could Knight capital have done better?
	Slide 28: Aside: Infrastructure As Code
	Slide 29: Infrastructure as Code represents complex infrastructure in “recipes”
	Slide 30: Learning objectives for this lecture

